Doxygen Source Code Documentation
fim+.c File Reference
#include "RegAna.c"#include "ranks.c"Go to the source code of this file.
Defines | |
| #define | MAX_OUTPUT_TYPE 12 |
| #define | FIM_FitCoef (0) |
| #define | FIM_BestIndex (1) |
| #define | FIM_PrcntChange (2) |
| #define | FIM_Baseline (4) |
| #define | FIM_Correlation (6) |
| #define | FIM_PrcntFromAve (3) |
| #define | FIM_Average (5) |
| #define | FIM_PrcntFromTop (7) |
| #define | FIM_Topline (8) |
| #define | FIM_SigmaResid (9) |
| #define | FIM_SpearmanCC (10) |
| #define | FIM_QuadrantCC (11) |
| #define | USE_LEGENDRE |
Functions | |
| double | legendre (double x, int m) |
| int | init_indep_var_matrix (int q, int p, int NFirst, int N, int polort, int num_ort_files, int num_ideal_files, MRI_IMAGE **ort_array, int **ort_list, MRI_IMAGE **ideal_array, int **ideal_list, float *x_bot, float *x_ave, float *x_top, int *good_list, matrix *x) |
| int | init_regression_analysis (int q, int p, int N, int num_idealts, matrix xdata, matrix *x_base, matrix *xtxinvxt_base, matrix *x_ideal, matrix *xtxinvxt_ideal, float **rarray) |
| float | calc_CC (int N, float *x, float *y) |
| float | calc_SpearmanCC (int N, float *r, float *s) |
| float | sign (float x) |
| float | calc_QuadrantCC (int N, float *r, float *s) |
| float | percent_change (float num, float den) |
| void | regression_analysis (int N, int q, int num_idealts, matrix x_base, matrix xtxinvxt_base, matrix *x_ideal, matrix *xtxinvxt_ideal, vector y, float *x_bot, float *x_ave, float *x_top, float **rarray, int *output_type, float *FimParams) |
| void | report_results (int *output_type, float *FimParams, char **label) |
Variables | |
| char * | OUTPUT_TYPE_name [MAX_OUTPUT_TYPE] |
| char | lbuf [4096] |
| char | sbuf [256] |
Define Documentation
|
|
Definition at line 48 of file fim+.c. Referenced by display_help_menu(), and regression_analysis(). |
|
|
Definition at line 45 of file fim+.c. Referenced by display_help_menu(), and regression_analysis(). |
|
|
Definition at line 43 of file fim+.c. Referenced by check_for_valid_inputs(), display_help_menu(), and regression_analysis(). |
|
|
Definition at line 46 of file fim+.c. Referenced by calculate_results(), display_help_menu(), regression_analysis(), and write_bucket_data(). |
|
|
Definition at line 42 of file fim+.c. Referenced by display_help_menu(), and regression_analysis(). |
|
|
Definition at line 44 of file fim+.c. Referenced by display_help_menu(), and regression_analysis(). |
|
|
Definition at line 47 of file fim+.c. Referenced by display_help_menu(), and regression_analysis(). |
|
|
Definition at line 49 of file fim+.c. Referenced by display_help_menu(), and regression_analysis(). |
|
|
Definition at line 53 of file fim+.c. Referenced by display_help_menu(), regression_analysis(), and write_bucket_data(). |
|
|
Definition at line 51 of file fim+.c. Referenced by display_help_menu(), and regression_analysis(). |
|
|
Definition at line 52 of file fim+.c. Referenced by display_help_menu(), regression_analysis(), and write_bucket_data(). |
|
|
Definition at line 50 of file fim+.c. Referenced by display_help_menu(), and regression_analysis(). |
|
|
Definition at line 34 of file fim+.c. Referenced by allocate_memory(), calculate_results(), get_options(), initialize_options(), report_results(), save_voxel(), terminate_program(), and write_bucket_data(). |
|
|
|
Function Documentation
|
||||||||||||||||
|
Definition at line 462 of file fim+.c. References i. Referenced by calc_QuadrantCC(), and calc_SpearmanCC().
00468 {
00469 const float EPSILON = 1.0e-10; /* protect against divide by zero */
00470 float cc;
00471 int i;
00472 float csum, xsum, ysum, prod;
00473
00474
00475 csum = xsum = ysum = 0.0;
00476
00477 for (i = 0; i < N; i++)
00478 {
00479 csum += x[i] * y[i];
00480 xsum += x[i] * x[i];
00481 ysum += y[i] * y[i];
00482 }
00483
00484
00485 prod = xsum * ysum;
00486 if (prod < EPSILON)
00487 cc = 0.0;
00488 else
00489 cc = csum / sqrt(prod);
00490
00491
00492 return (cc);
00493
00494 }
|
|
||||||||||||||||
|
Definition at line 558 of file fim+.c. References calc_CC(), free, i, malloc, r, and sign. Referenced by regression_analysis().
00564 {
00565 float cc;
00566 float rbar;
00567 float * dr = NULL;
00568 float * ds = NULL;
00569 int i;
00570
00571
00572 dr = (float *) malloc (sizeof(float) * N);
00573 ds = (float *) malloc (sizeof(float) * N);
00574
00575
00576 rbar = (N+1.0) / 2.0;
00577 for (i = 0; i < N; i++)
00578 {
00579 dr[i] = sign(r[i] - rbar);
00580 ds[i] = sign(s[i] - rbar);
00581 }
00582
00583
00584 cc = calc_CC(N, dr, ds);
00585
00586 free (dr); dr = NULL;
00587 free (ds); ds = NULL;
00588
00589 return (cc);
00590 }
|
|
||||||||||||||||
|
Definition at line 503 of file fim+.c. References calc_CC(), free, i, malloc, and r. Referenced by regression_analysis().
00509 {
00510 float cc;
00511 float rbar;
00512 float * dr = NULL;
00513 float * ds = NULL;
00514 int i;
00515
00516
00517 dr = (float *) malloc (sizeof(float) * N);
00518 ds = (float *) malloc (sizeof(float) * N);
00519
00520
00521 rbar = (N+1.0) / 2.0;
00522 for (i = 0; i < N; i++)
00523 {
00524 dr[i] = r[i] - rbar;
00525 ds[i] = s[i] - rbar;
00526 }
00527
00528
00529 cc = calc_CC(N, dr, ds);
00530
00531 free (dr); dr = NULL;
00532 free (ds); ds = NULL;
00533
00534 return (cc);
00535 }
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
if here, m > 20 ==> use recurrence relation * Definition at line 185 of file fim+.c. References BIG_NUMBER, far, i, legendre(), matrix_create(), matrix_destroy(), matrix_equate(), matrix_extract_rows(), matrix_initialize(), MRI_FLOAT_PTR, p, and q. Referenced by calculate_results().
00205 {
00206 const int BIG_NUMBER = 33333;
00207 int i; /* time index */
00208 int m; /* X matrix column index */
00209 int n; /* X matrix row index */
00210 int is; /* input ideal index */
00211 float * far = NULL;
00212 int nx, ny, iq, nq;
00213 int Ngood;
00214 matrix xgood;
00215 #ifdef USE_LEGENDRE
00216 double nfac,nsub ;
00217 #endif
00218
00219
00220 /*----- Initialize X matrix -----*/
00221 matrix_create (N, p, x);
00222 matrix_initialize (&xgood);
00223
00224 #ifdef USE_LEGENDRE
00225 nsub = 0.5*(N-1) ;
00226 nfac = 1.0/nsub ;
00227 #endif
00228
00229 /*----- Set up columns of X matrix corresponding to polynomial orts -----*/
00230 for (m = 0; m <= polort; m++)
00231 for (n = 0; n < N; n++)
00232 {
00233 #ifndef USE_LEGENDRE /** the old polort way: t^m **/
00234 i = n + NFirst;
00235 (*x).elts[n][m] = pow ((double)i, (double)m);
00236
00237 #else /** the new polort way: Legendre P_m(t) - 29 Mar 2005 **/
00238
00239 (*x).elts[n][m] = legendre( nfac*(n-nsub) , m ) ;
00240 #endif
00241 }
00242
00243
00244 /*----- Set up columns of X matrix corresponding to ort time series -----*/
00245 for (is = 0; is < num_ort_files; is++)
00246 {
00247 far = MRI_FLOAT_PTR (ort_array[is]);
00248 nx = ort_array[is]->nx;
00249 ny = ort_array[is]->ny;
00250
00251 if (ort_list[is] == NULL)
00252 for (iq = 0; iq < ny; iq++)
00253 {
00254 for (n = 0; n < N; n++)
00255 {
00256 i = n + NFirst;
00257 (*x).elts[n][m] = *(far + iq*nx + i);
00258 }
00259 m++;
00260 }
00261 else
00262 {
00263 nq = ort_list[is][0];
00264 for (iq = 1; iq <= nq; iq++)
00265 {
00266 for (n = 0; n < N; n++)
00267 {
00268 i = n + NFirst;
00269 (*x).elts[n][m] = *(far + ort_list[is][iq]*nx + i);
00270 }
00271 m++;
00272 }
00273 }
00274 }
00275
00276
00277 /*----- Set up columns of X matrix corresponding to ideal time series -----*/
00278 for (is = 0; is < num_ideal_files; is++)
00279 {
00280 far = MRI_FLOAT_PTR (ideal_array[is]);
00281 nx = ideal_array[is]->nx;
00282 ny = ideal_array[is]->ny;
00283
00284 if (ideal_list[is] == NULL)
00285 for (iq = 0; iq < ny; iq++)
00286 {
00287 for (n = 0; n < N; n++)
00288 {
00289 i = n + NFirst;
00290 (*x).elts[n][m] = *(far + iq*nx + i);
00291 }
00292
00293 m++;
00294 }
00295 else
00296 {
00297 nq = ideal_list[is][0];
00298 for (iq = 1; iq <= nq; iq++)
00299 {
00300 for (n = 0; n < N; n++)
00301 {
00302 i = n + NFirst;
00303 (*x).elts[n][m] = *(far + ideal_list[is][iq]*nx + i);
00304 }
00305
00306 m++;
00307 }
00308 }
00309 }
00310
00311
00312 /*----- Remove row if ideal contains value over 33333 -----*/
00313 Ngood = N;
00314 m = 0;
00315 for (n = 0; n < N; n++)
00316 {
00317 for (is = q; is < p; is++)
00318 {
00319 if ((*x).elts[n][is] >= BIG_NUMBER) break;
00320 }
00321 if (is < p)
00322 {
00323 Ngood--;
00324 }
00325 else
00326 {
00327 good_list[m] = n;
00328 m++;
00329 }
00330 }
00331 matrix_extract_rows ((*x), Ngood, good_list, &xgood);
00332 matrix_equate (xgood, x);
00333
00334
00335 /*----- Find min, max, and ave for each column of the X matrix -----*/
00336 for (is = 0; is < p; is++)
00337 {
00338 x_bot[is] = x_top[is] = (*x).elts[0][is];
00339 x_ave[is] = 0.0;
00340 for (n = 0; n < Ngood; n++)
00341 {
00342 if ((*x).elts[n][is] < x_bot[is]) x_bot[is] = (*x).elts[n][is];
00343 if ((*x).elts[n][is] > x_top[is]) x_top[is] = (*x).elts[n][is];
00344 x_ave[is] += (*x).elts[n][is] / Ngood;
00345 }
00346 }
00347
00348
00349 matrix_destroy (&xgood);
00350
00351 return (Ngood);
00352
00353 }
|
|
||||||||||||||||||||||||||||||||||||||||||||
|
the new polort way: Legendre P_m(t) - 29 Mar 2005 * Definition at line 362 of file fim+.c. References calc_coef(), calc_matrices(), calc_resids(), column_to_vector(), vector::elts, free, malloc, matrix_destroy(), matrix_initialize(), MTEST, p, q, rank_darray(), vector_destroy(), and vector_initialize(). Referenced by calculate_results().
00370 : (1/(X'X))X' for baseline model */ 00371 matrix * x_ideal, /* extracted X matrices for ideal models */ 00372 matrix * xtxinvxt_ideal, /* matrix: (1/(X'X))X' for ideal models */ 00373 float ** rarray /* ranked arrays of ideal time series */ 00374 ) 00375 00376 { 00377 int * plist = NULL; /* list of model parameters */ 00378 int ip, it; /* parameter indices */ 00379 int is, js; /* ideal indices */ 00380 int jm; /* lag index */ 00381 int ok; /* flag for successful matrix calculation */ 00382 matrix xtxinv_temp; /* intermediate results */ 00383 vector ideal; /* ideal vector */ 00384 vector coef_temp; /* intermediate results */ 00385 vector xres; /* vector of residuals */ 00386 float sse_base; /* baseline model error sum of squares */ 00387 00388 00389 /*----- Initialize matrix -----*/ 00390 matrix_initialize (&xtxinv_temp); 00391 vector_initialize (&ideal); 00392 vector_initialize (&coef_temp); 00393 vector_initialize (&xres); 00394 00395 00396 /*----- Allocate memory -----*/ 00397 plist = (int *) malloc (sizeof(int) * p); MTEST (plist); 00398 00399 00400 /*----- Initialize matrices for the baseline model -----*/ 00401 for (ip = 0; ip < q; ip++) 00402 plist[ip] = ip; 00403 ok = calc_matrices (xdata, q, plist, x_base, &xtxinv_temp, xtxinvxt_base); 00404 if (!ok) { matrix_destroy (&xtxinv_temp); return (0); }; 00405 00406 00407 /*----- Initialize matrices for ideal functions -----*/ 00408 for (is = 0; is < num_idealts; is++) 00409 { 00410 for (ip = 0; ip < q; ip++) 00411 { 00412 plist[ip] = ip; 00413 } 00414 00415 plist[q] = q + is; 00416 00417 ok = calc_matrices (xdata, q+1, plist, 00418 &(x_ideal[is]), &xtxinv_temp, &(xtxinvxt_ideal[is])); 00419 if (!ok) { matrix_destroy (&xtxinv_temp); return (0); }; 00420 } 00421 00422 00423 /*----- Set up the ranked array for each ideal -----*/ 00424 for (is = 0; is < num_idealts; is++) 00425 { 00426 /*----- Convert column of matrix to vector -----*/ 00427 column_to_vector (xdata, q+is, &ideal); 00428 00429 /*----- Calculate regression coefficients for baseline model -----*/ 00430 calc_coef (*xtxinvxt_base, ideal, &coef_temp); 00431 00432 /*----- Calculate the error sum of squares for the baseline model -----*/ 00433 sse_base = calc_resids (*x_base, coef_temp, ideal, &xres); 00434 00435 /*----- Form rank array from residual array -----*/ 00436 rarray[is] = rank_darray (N, xres.elts); 00437 00438 } 00439 00440 00441 /*----- Destroy matrix -----*/ 00442 matrix_destroy (&xtxinv_temp); 00443 vector_destroy (&ideal); 00444 vector_destroy (&coef_temp); 00445 vector_destroy (&xres); 00446 00447 00448 /*----- Deallocate memory -----*/ 00449 free (plist); plist = NULL; 00450 00451 00452 return (1); 00453 } |
|
||||||||||||
|
Definition at line 60 of file fim+.c. Referenced by init_indep_var_matrix(), and legendre().
00061 {
00062 if( m < 0 ) return 1.0 ; /* bad input */
00063
00064 switch( m ){ /*** P_m(x) for m=0..20 ***/
00065 case 0: return 1.0 ;
00066 case 1: return x ;
00067 case 2: return (3.0*x*x-1.0)/2.0 ;
00068 case 3: return (5.0*x*x-3.0)*x/2.0 ;
00069 case 4: return ((35.0*x*x-30.0)*x*x+3.0)/8.0 ;
00070 case 5: return ((63.0*x*x-70.0)*x*x+15.0)*x/8.0 ;
00071 case 6: return (((231.0*x*x-315.0)*x*x+105.0)*x*x-5.0)/16.0 ;
00072 case 7: return (((429.0*x*x-693.0)*x*x+315.0)*x*x-35.0)*x/16.0 ;
00073 case 8: return ((((6435.0*x*x-12012.0)*x*x+6930.0)*x*x-1260.0)*x*x+35.0)/128.0;
00074
00075 /** 07 Feb 2005: this part generated by Maple, then hand massaged **/
00076
00077 case 9:
00078 return (0.24609375e1 + (-0.3609375e2 + (0.140765625e3 + (-0.20109375e3
00079 + 0.949609375e2 * x * x) * x * x) * x * x) * x * x) * x;
00080
00081 case 10:
00082 return -0.24609375e0 + (0.1353515625e2 + (-0.1173046875e3 +
00083 (0.3519140625e3 + (-0.42732421875e3 + 0.18042578125e3 * x * x)
00084 * x * x) * x * x) * x * x) * x * x;
00085
00086 case 11:
00087 return (-0.270703125e1 + (0.5865234375e2 + (-0.3519140625e3 +
00088 (0.8546484375e3 + (-0.90212890625e3 + 0.34444921875e3 * x * x)
00089 * x * x) * x * x) * x * x) * x * x) * x;
00090
00091 case 12:
00092 return 0.2255859375e0 + (-0.17595703125e2 + (0.2199462890625e3 +
00093 (-0.99708984375e3 + (0.20297900390625e4 + (-0.1894470703125e4
00094 + 0.6601943359375e3 * x * x) * x * x) * x * x) * x * x) * x * x)
00095 * x * x;
00096
00097 case 13:
00098 return (0.29326171875e1 + (-0.87978515625e2 + (0.7478173828125e3 +
00099 (-0.270638671875e4 + (0.47361767578125e4 + (-0.3961166015625e4
00100 + 0.12696044921875e4 * x * x) * x * x) * x * x) * x * x) * x * x)
00101 * x * x) * x;
00102
00103 case 14:
00104 return -0.20947265625e0 + (0.2199462890625e2 + (-0.37390869140625e3 +
00105 (0.236808837890625e4 + (-0.710426513671875e4 +
00106 (0.1089320654296875e5 + (-0.825242919921875e4 +
00107 0.244852294921875e4 * x * x) * x * x) * x * x) * x * x) * x * x)
00108 * x * x) * x * x;
00109
00110 case 15:
00111 return (-0.314208984375e1 + (0.12463623046875e3 + (-0.142085302734375e4
00112 + (0.710426513671875e4 + (-0.1815534423828125e5 +
00113 (0.2475728759765625e5 + (-0.1713966064453125e5 +
00114 0.473381103515625e4 * x * x) * x * x) * x * x) * x * x)
00115 * x * x) * x * x) * x * x) * x;
00116
00117 case 16:
00118 return 0.196380615234375e0 + (-0.26707763671875e2 + (0.5920220947265625e3
00119 + (-0.4972985595703125e4 + (0.2042476226806641e5 +
00120 (-0.4538836059570312e5 + (0.5570389709472656e5 +
00121 (-0.3550358276367188e5 + 0.9171758880615234e4 * x * x) * x * x)
00122 * x * x) * x * x) * x * x) * x * x) * x * x) * x * x;
00123
00124 case 17:
00125 return (0.3338470458984375e1 + (-0.169149169921875e3 +
00126 (0.2486492797851562e4 + (-0.1633980981445312e5 +
00127 (0.5673545074462891e5 + (-0.1114077941894531e6 +
00128 (0.1242625396728516e6 + (-0.7337407104492188e5 +
00129 0.1780400253295898e5 * x * x) * x * x) * x * x) * x * x)
00130 * x * x) * x * x) * x * x) * x * x) * x;
00131
00132 case 18:
00133 return -0.1854705810546875e0 + (0.3171546936035156e2 +
00134 (-0.8880331420898438e3 + (0.9531555725097656e4 +
00135 (-0.5106190567016602e5 + (0.153185717010498e6 +
00136 (-0.2692355026245117e6 + (0.275152766418457e6 +
00137 (-0.1513340215301514e6 + 0.3461889381408691e5 * x * x) * x * x)
00138 * x * x) * x * x) * x * x) * x * x) * x * x) * x * x) * x * x;
00139
00140 case 19:
00141 return (-0.3523941040039062e1 + (0.2220082855224609e3 +
00142 (-0.4084952453613281e4 + (0.3404127044677734e5 +
00143 (-0.153185717010498e6 + (0.4038532539367676e6 +
00144 (-0.6420231216430664e6 + (0.6053360861206055e6 +
00145 (-0.3115700443267822e6 + 0.6741574058532715e5 * x * x) * x * x)
00146 * x * x) * x * x) * x * x) * x * x) * x * x) * x * x) * x * x) * x;
00147
00148 case 20:
00149 return 0.1761970520019531e0 + (-0.3700138092041016e2 +
00150 (0.127654764175415e4 + (-0.1702063522338867e5 +
00151 (0.1148892877578735e6 + (-0.4442385793304443e6 +
00152 (0.1043287572669983e7 + (-0.1513340215301514e7 +
00153 (0.1324172688388824e7 + (-0.6404495355606079e6 +
00154 0.1314606941413879e6 * x * x) * x * x) * x * x) * x * x) * x * x)
00155 * x * x) * x * x) * x * x) * x * x) * x * x;
00156 }
00157
00158 #if 0
00159 /* order out of range: return Chebyshev instead (it's easy) */
00160
00161 if( x >= 1.0 ) x = 0.0 ;
00162 else if ( x <= -1.0 ) x = 3.14159265358979323846 ;
00163 else x = acos(x) ;
00164 return cos(m*x) ;
00165 #else
00166 /** if here, m > 20 ==> use recurrence relation **/
00167
00168 { double pk, pkm1, pkm2 ; int k ;
00169 pkm2 = legendre( x , 19 ) ;
00170 pkm1 = legendre( x , 20 ) ;
00171 for( k=21 ; k <= m ; k++ , pkm2=pkm1 , pkm1=pk )
00172 pk = ((2.0*k-1.0)*x*pkm1 - (k-1.0)*pkm2)/k ;
00173 return pk ;
00174 }
00175 #endif
00176 }
|
|
||||||||||||
|
Definition at line 599 of file fim+.c. References sign. Referenced by regression_analysis().
00600 {
00601 const float EPSILON = 1.0e-10; /* guard against divide by zero */
00602 const float MAX_PERCENT = 1000.0; /* limit maximum percent change */
00603 float PrcntChange;
00604
00605
00606 if (fabs(den) < EPSILON)
00607 PrcntChange = sign(num) * MAX_PERCENT;
00608 else
00609 PrcntChange = 100.0 * num / den;
00610
00611 if (PrcntChange > MAX_PERCENT) PrcntChange = MAX_PERCENT;
00612 if (PrcntChange < -MAX_PERCENT) PrcntChange = -MAX_PERCENT;
00613
00614 return (PrcntChange);
00615 }
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Definition at line 624 of file fim+.c. References calc_coef(), calc_QuadrantCC(), calc_resids(), calc_rsqr(), calc_SpearmanCC(), calc_sse(), vector::elts, FIM_Average, FIM_Baseline, FIM_BestIndex, FIM_Correlation, FIM_FitCoef, FIM_PrcntChange, FIM_PrcntFromAve, FIM_PrcntFromTop, FIM_QuadrantCC, FIM_SigmaResid, FIM_SpearmanCC, FIM_Topline, free, percent_change(), q, rank_darray(), vector_destroy(), vector_equate(), and vector_initialize(). Referenced by calculate_results().
00629 : (1/(X'X))X' for baseline model */ 00630 matrix * x_ideal, /* extracted X matrices for ideal models */ 00631 matrix * xtxinvxt_ideal, /* matrix: (1/(X'X))X' for ideal models */ 00632 vector y, /* vector of measured data */ 00633 float * x_bot, /* minimum of stimulus time series */ 00634 float * x_ave, /* average of stimulus time series */ 00635 float * x_top, /* maximum of stimulus time series */ 00636 float ** rarray, /* ranked arrays of ideal time series */ 00637 int * output_type, /* list of operator requested outputs */ 00638 float * FimParams /* output fim parameters */ 00639 ) 00640 00641 { 00642 const float EPSILON = 1.0e-05; /* protection against divide by zero */ 00643 int is; /* input ideal index */ 00644 float sse_base; /* error sum of squares, baseline model */ 00645 float sse_ideal; /* error sum of squares, ideal model */ 00646 vector coef_temp; /* intermediate results */ 00647 vector coef_best; /* best results */ 00648 vector yres; /* vector of residuals */ 00649 float rtemp, rbest; /* best correlation coefficient */ 00650 float stemp, sbest; /* best Spearman correlation coefficient */ 00651 float qtemp, qbest; /* best quadrant correlation coefficient */ 00652 float mse; /* mean square error (sample variance) */ 00653 00654 float * sarray = NULL; /* ranked array of measurement data */ 00655 00656 /* fim output parameters */ 00657 float FitCoef = 0.0; 00658 int BestIndex = 0; 00659 float PrcntChange = 0.0; 00660 float Baseline = 0.0; 00661 float Correlation = 0.0; 00662 float PrcntFromAve = 0.0; 00663 float Average = 0.0; 00664 float PrcntFromTop = 0.0; 00665 float Topline = 0.0; 00666 float SigmaResid = 0.0; 00667 float SpearmanCC = 0.0; 00668 float QuadrantCC = 0.0; 00669 00670 00671 /*----- Initialization -----*/ 00672 vector_initialize (&coef_temp); 00673 vector_initialize (&coef_best); 00674 vector_initialize (&yres); 00675 00676 00677 /*----- Calculate regression coefficients for baseline model -----*/ 00678 calc_coef (xtxinvxt_base, y, &coef_temp); 00679 00680 00681 /*----- Calculate the error sum of squares for the baseline model -----*/ 00682 sse_base = calc_resids (x_base, coef_temp, y, &yres); 00683 00684 00685 /*----- Form rank array from y array -----*/ 00686 if (output_type[FIM_SpearmanCC] || output_type[FIM_QuadrantCC]) 00687 sarray = rank_darray (N, yres.elts); 00688 00689 00690 /*----- Determine the best ideal reference for this voxel -----*/ 00691 rbest = 0.0; sbest = 0.0; qbest = 0.0; BestIndex = -1; 00692 for (is = 0; is < num_idealts; is++) 00693 { 00694 00695 /*----- Calculate regression coefficients for ideal model -----*/ 00696 calc_coef (xtxinvxt_ideal[is], y, &coef_temp); 00697 00698 00699 /*----- Calculate the error sum of squares for the ideal model -----*/ 00700 sse_ideal = calc_sse (x_ideal[is], coef_temp, y); 00701 00702 00703 /*----- Calculate partial R^2 for this ideal -----*/ 00704 rtemp = calc_rsqr (sse_ideal, sse_base); 00705 00706 00707 if (rtemp >= rbest) 00708 { 00709 rbest = rtemp; 00710 BestIndex = is; 00711 vector_equate (coef_temp, &coef_best); 00712 if (num_idealts == 1) 00713 mse = sse_ideal / (N-q-1); 00714 else 00715 mse = sse_ideal / (N-q-2); 00716 } 00717 00718 00719 /*----- Calculate the Spearman rank correlation coefficient -----*/ 00720 if (output_type[FIM_SpearmanCC]) 00721 { 00722 stemp = calc_SpearmanCC (N, rarray[is], sarray); 00723 if (fabs(stemp) > fabs(sbest)) sbest = stemp; 00724 } 00725 00726 00727 /*----- Calculate the Quadrant correlation coefficient -----*/ 00728 if (output_type[FIM_QuadrantCC]) 00729 { 00730 qtemp = calc_QuadrantCC (N, rarray[is], sarray); 00731 if (fabs(qtemp) > fabs(qbest)) qbest = qtemp; 00732 } 00733 } 00734 00735 if ((0 <= BestIndex) && (BestIndex < num_idealts)) 00736 { 00737 float Top, Ave, Base, Center; 00738 int ip; 00739 00740 Top = x_top[q+BestIndex]; 00741 Ave = x_ave[q+BestIndex]; 00742 Base = x_bot[q+BestIndex]; 00743 00744 00745 FitCoef = coef_best.elts[q]; 00746 Correlation = sqrt(rbest); 00747 if (FitCoef < 0.0) Correlation = -Correlation; 00748 00749 Center = 0.0; 00750 for (ip = 0; ip < q; ip++) 00751 Center += coef_best.elts[ip] * x_ave[ip]; 00752 00753 Baseline = Center + FitCoef*Base; 00754 Average = Center + FitCoef*Ave; 00755 Topline = Center + FitCoef*Top; 00756 00757 00758 00759 PrcntChange = percent_change (FitCoef * (Top-Base), Baseline); 00760 PrcntFromAve = percent_change (FitCoef * (Top-Base), Average); 00761 PrcntFromTop = percent_change (FitCoef * (Top-Base), Topline); 00762 00763 SigmaResid = sqrt(mse); 00764 00765 SpearmanCC = sbest; 00766 00767 QuadrantCC = qbest; 00768 } 00769 00770 00771 /*----- Save output parameters -----*/ 00772 FimParams[FIM_FitCoef] = FitCoef; 00773 FimParams[FIM_BestIndex] = BestIndex + 1.0; 00774 FimParams[FIM_PrcntChange] = PrcntChange; 00775 FimParams[FIM_Baseline] = Baseline; 00776 FimParams[FIM_Correlation] = Correlation; 00777 FimParams[FIM_PrcntFromAve] = PrcntFromAve; 00778 FimParams[FIM_Average] = Average; 00779 FimParams[FIM_PrcntFromTop] = PrcntFromTop; 00780 FimParams[FIM_Topline] = Topline; 00781 FimParams[FIM_SigmaResid] = SigmaResid; 00782 FimParams[FIM_SpearmanCC] = SpearmanCC; 00783 FimParams[FIM_QuadrantCC] = QuadrantCC; 00784 00785 00786 /*----- Dispose of vectors -----*/ 00787 vector_destroy (&coef_temp); 00788 vector_destroy (&coef_best); 00789 vector_destroy (&yres); 00790 00791 00792 /*----- Deallocate memory -----*/ 00793 if (sarray != NULL) 00794 { free (sarray); sarray = NULL; } 00795 00796 } |
|
||||||||||||||||
|
Definition at line 806 of file fim+.c. References lbuf, MAX_OUTPUT_TYPE, OUTPUT_TYPE_name, and sbuf.
00812 {
00813 int ip; /* parameter index */
00814
00815
00816 if( label != NULL ){ /* assemble this 1 line at a time from sbuf */
00817
00818 lbuf[0] = '\0' ; /* make this a 0 length string to start */
00819
00820 /** for each reference, make a string into sbuf **/
00821
00822 for (ip = 0; ip < MAX_OUTPUT_TYPE; ip++)
00823 if (output_type[ip])
00824 {
00825 sprintf (sbuf, "%12s = %10.4f \n",
00826 OUTPUT_TYPE_name[ip], FimParams[ip]);
00827 strcat (lbuf, sbuf);
00828 }
00829
00830
00831 *label = lbuf ; /* send address of lbuf back in what label points to */
00832 }
00833
00834 }
|
|
|
Definition at line 543 of file fim+.c.
00545 {
00546 if (x > 0.0) return (1.0);
00547 if (x < 0.0) return (-1.0);
00548 return (0.0);
00549 }
|
Variable Documentation
|
|
Definition at line 801 of file fim+.c. Referenced by report_results(). |
|
|
Initial value:
{ "Fit Coef", "Best Index", "% Change", "% From Ave", "Baseline", "Average",
"Correlation", "% From Top", "Topline", "Sigma Resid",
"Spearman CC", "Quadrant CC" }Definition at line 36 of file fim+.c. Referenced by report_results(). |
|
|
Definition at line 802 of file fim+.c. Referenced by report_results(). |