Doxygen Source Code Documentation
jidctred.c File Reference
#include "jinclude.h"#include "jpeglib.h"#include "jdct.h"Go to the source code of this file.
Define Documentation
|
|
Definition at line 43 of file jidctred.c. Referenced by jpeg_idct_2x2(), and jpeg_idct_4x4(). |
|
|
Definition at line 109 of file jidctred.c. |
|
|
Definition at line 58 of file jidctred.c. Referenced by jpeg_idct_4x4(). |
|
|
Definition at line 59 of file jidctred.c. Referenced by jpeg_idct_4x4(). |
|
|
Definition at line 60 of file jidctred.c. Referenced by jpeg_idct_4x4(). |
|
|
Definition at line 61 of file jidctred.c. Referenced by jpeg_idct_2x2(). |
|
|
Definition at line 62 of file jidctred.c. Referenced by jpeg_idct_4x4(). |
|
|
Definition at line 63 of file jidctred.c. Referenced by jpeg_idct_2x2(). |
|
|
Definition at line 64 of file jidctred.c. Referenced by jpeg_idct_4x4(). |
|
|
Definition at line 65 of file jidctred.c. Referenced by jpeg_idct_4x4(). |
|
|
Definition at line 66 of file jidctred.c. Referenced by jpeg_idct_2x2(). |
|
|
Definition at line 67 of file jidctred.c. Referenced by jpeg_idct_4x4(). |
|
|
Definition at line 68 of file jidctred.c. Referenced by jpeg_idct_4x4(). |
|
|
Definition at line 69 of file jidctred.c. Referenced by jpeg_idct_4x4(). |
|
|
Definition at line 70 of file jidctred.c. Referenced by jpeg_idct_4x4(). |
|
|
Definition at line 71 of file jidctred.c. Referenced by jpeg_idct_2x2(). |
|
|
Definition at line 23 of file jidctred.c. |
|
|
Definition at line 98 of file jidctred.c. |
|
|
Definition at line 44 of file jidctred.c. Referenced by jpeg_idct_2x2(), and jpeg_idct_4x4(). |
Function Documentation
|
||||||||||||||||||||||||
|
Definition at line 379 of file jidctred.c. References coef_block, compptr, jpeg_component_info::dct_table, DEQUANTIZE, DESCALE, IDCT_range_limit, INT32, ISLOW_MULT_TYPE, JCOEFPTR, JDIMENSION, JSAMPARRAY, JSAMPLE, output_col, and RANGE_MASK. Referenced by start_pass().
00382 {
00383 int dcval;
00384 ISLOW_MULT_TYPE * quantptr;
00385 JSAMPLE *range_limit = IDCT_range_limit(cinfo);
00386 SHIFT_TEMPS
00387
00388 /* We hardly need an inverse DCT routine for this: just take the
00389 * average pixel value, which is one-eighth of the DC coefficient.
00390 */
00391 quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
00392 dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
00393 dcval = (int) DESCALE((INT32) dcval, 3);
00394
00395 output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
00396 }
|
|
||||||||||||||||||||||||
|
Definition at line 271 of file jidctred.c. References coef_block, compptr, CONST_BITS, jpeg_component_info::dct_table, DEQUANTIZE, DESCALE, FIX_0_720959822, FIX_0_850430095, FIX_1_272758580, FIX_3_624509785, IDCT_range_limit, INT32, ISLOW_MULT_TYPE, JCOEFPTR, JDIMENSION, JSAMPARRAY, JSAMPLE, JSAMPROW, MULTIPLY, output_col, PASS1_BITS, RANGE_MASK, and z1. Referenced by start_pass().
00274 {
00275 INT32 tmp0, tmp10, z1;
00276 JCOEFPTR inptr;
00277 ISLOW_MULT_TYPE * quantptr;
00278 int * wsptr;
00279 JSAMPROW outptr;
00280 JSAMPLE *range_limit = IDCT_range_limit(cinfo);
00281 int ctr;
00282 int workspace[DCTSIZE*2]; /* buffers data between passes */
00283 SHIFT_TEMPS
00284
00285 /* Pass 1: process columns from input, store into work array. */
00286
00287 inptr = coef_block;
00288 quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
00289 wsptr = workspace;
00290 for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
00291 /* Don't bother to process columns 2,4,6 */
00292 if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
00293 continue;
00294 if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&
00295 inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {
00296 /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
00297 int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
00298
00299 wsptr[DCTSIZE*0] = dcval;
00300 wsptr[DCTSIZE*1] = dcval;
00301
00302 continue;
00303 }
00304
00305 /* Even part */
00306
00307 z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
00308 tmp10 = z1 << (CONST_BITS+2);
00309
00310 /* Odd part */
00311
00312 z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
00313 tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
00314 z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
00315 tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
00316 z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
00317 tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
00318 z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
00319 tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
00320
00321 /* Final output stage */
00322
00323 wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
00324 wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
00325 }
00326
00327 /* Pass 2: process 2 rows from work array, store into output array. */
00328
00329 wsptr = workspace;
00330 for (ctr = 0; ctr < 2; ctr++) {
00331 outptr = output_buf[ctr] + output_col;
00332 /* It's not clear whether a zero row test is worthwhile here ... */
00333
00334 #ifndef NO_ZERO_ROW_TEST
00335 if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
00336 /* AC terms all zero */
00337 JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
00338 & RANGE_MASK];
00339
00340 outptr[0] = dcval;
00341 outptr[1] = dcval;
00342
00343 wsptr += DCTSIZE; /* advance pointer to next row */
00344 continue;
00345 }
00346 #endif
00347
00348 /* Even part */
00349
00350 tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2);
00351
00352 /* Odd part */
00353
00354 tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
00355 + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
00356 + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
00357 + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
00358
00359 /* Final output stage */
00360
00361 outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
00362 CONST_BITS+PASS1_BITS+3+2)
00363 & RANGE_MASK];
00364 outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
00365 CONST_BITS+PASS1_BITS+3+2)
00366 & RANGE_MASK];
00367
00368 wsptr += DCTSIZE; /* advance pointer to next row */
00369 }
00370 }
|
|
||||||||||||||||||||||||
|
Definition at line 118 of file jidctred.c. References coef_block, compptr, CONST_BITS, jpeg_component_info::dct_table, DEQUANTIZE, DESCALE, FIX_0_211164243, FIX_0_509795579, FIX_0_601344887, FIX_0_765366865, FIX_0_899976223, FIX_1_061594337, FIX_1_451774981, FIX_1_847759065, FIX_2_172734803, FIX_2_562915447, IDCT_range_limit, INT32, ISLOW_MULT_TYPE, JCOEFPTR, JDIMENSION, JSAMPARRAY, JSAMPLE, JSAMPROW, MULTIPLY, output_col, PASS1_BITS, RANGE_MASK, and z1. Referenced by start_pass().
00121 {
00122 INT32 tmp0, tmp2, tmp10, tmp12;
00123 INT32 z1, z2, z3, z4;
00124 JCOEFPTR inptr;
00125 ISLOW_MULT_TYPE * quantptr;
00126 int * wsptr;
00127 JSAMPROW outptr;
00128 JSAMPLE *range_limit = IDCT_range_limit(cinfo);
00129 int ctr;
00130 int workspace[DCTSIZE*4]; /* buffers data between passes */
00131 SHIFT_TEMPS
00132
00133 /* Pass 1: process columns from input, store into work array. */
00134
00135 inptr = coef_block;
00136 quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
00137 wsptr = workspace;
00138 for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
00139 /* Don't bother to process column 4, because second pass won't use it */
00140 if (ctr == DCTSIZE-4)
00141 continue;
00142 if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
00143 inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&
00144 inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {
00145 /* AC terms all zero; we need not examine term 4 for 4x4 output */
00146 int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS;
00147
00148 wsptr[DCTSIZE*0] = dcval;
00149 wsptr[DCTSIZE*1] = dcval;
00150 wsptr[DCTSIZE*2] = dcval;
00151 wsptr[DCTSIZE*3] = dcval;
00152
00153 continue;
00154 }
00155
00156 /* Even part */
00157
00158 tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
00159 tmp0 <<= (CONST_BITS+1);
00160
00161 z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
00162 z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
00163
00164 tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
00165
00166 tmp10 = tmp0 + tmp2;
00167 tmp12 = tmp0 - tmp2;
00168
00169 /* Odd part */
00170
00171 z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
00172 z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
00173 z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
00174 z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
00175
00176 tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
00177 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
00178 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
00179 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
00180
00181 tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
00182 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
00183 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
00184 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
00185
00186 /* Final output stage */
00187
00188 wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
00189 wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
00190 wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
00191 wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
00192 }
00193
00194 /* Pass 2: process 4 rows from work array, store into output array. */
00195
00196 wsptr = workspace;
00197 for (ctr = 0; ctr < 4; ctr++) {
00198 outptr = output_buf[ctr] + output_col;
00199 /* It's not clear whether a zero row test is worthwhile here ... */
00200
00201 #ifndef NO_ZERO_ROW_TEST
00202 if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
00203 wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
00204 /* AC terms all zero */
00205 JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3)
00206 & RANGE_MASK];
00207
00208 outptr[0] = dcval;
00209 outptr[1] = dcval;
00210 outptr[2] = dcval;
00211 outptr[3] = dcval;
00212
00213 wsptr += DCTSIZE; /* advance pointer to next row */
00214 continue;
00215 }
00216 #endif
00217
00218 /* Even part */
00219
00220 tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1);
00221
00222 tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065)
00223 + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865);
00224
00225 tmp10 = tmp0 + tmp2;
00226 tmp12 = tmp0 - tmp2;
00227
00228 /* Odd part */
00229
00230 z1 = (INT32) wsptr[7];
00231 z2 = (INT32) wsptr[5];
00232 z3 = (INT32) wsptr[3];
00233 z4 = (INT32) wsptr[1];
00234
00235 tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
00236 + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
00237 + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
00238 + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
00239
00240 tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
00241 + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
00242 + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
00243 + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
00244
00245 /* Final output stage */
00246
00247 outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
00248 CONST_BITS+PASS1_BITS+3+1)
00249 & RANGE_MASK];
00250 outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
00251 CONST_BITS+PASS1_BITS+3+1)
00252 & RANGE_MASK];
00253 outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
00254 CONST_BITS+PASS1_BITS+3+1)
00255 & RANGE_MASK];
00256 outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
00257 CONST_BITS+PASS1_BITS+3+1)
00258 & RANGE_MASK];
00259
00260 wsptr += DCTSIZE; /* advance pointer to next row */
00261 }
00262 }
|